To view this site you must be a
veterinarian surgeon or nurse.
Are you a Veterinary Surgeon or Veterinary Nurse?

No

Alfaxan for the maintenance of anaesthesia: Peer reviewed clinical papers.

STUDIES USING ALFAXALONE TOTAL INTRAVENOUS ANAESTHESIA IN CATS.


1. Clinical evaluation of alfaxalone to induce and maintain anaesthesia in cats undergoing neutering procedures.

Beths et al. (2013) investigated the use and efficacy of alfaxalone for total intravenous anaesthesia (TIVA) in thirty-four cats presenting for routine neutering procedures. Ten males, twenty-four females and both domestic and those of feral nature were included in the study. 
Method: Twenty minutes following premedication with intramuscular medetomidine (0.02mg/kg) and morphine (0.3mg/kg), anaesthesia was induced via intravenous alfaxalone (median dose of 1.7mg/kg, range of 0.7-3.0mg/kg) administered to effect, over approximately 1 minute, until endotracheal intubation was possible. Each patient was then attached to an anaesthetic machine and allowed to breathe 100% oxygen. Anaesthesia was maintained with alfaxalone administered intravenously as a continuous rate infusion (median dose of 0.18mg/kg/min, range of 0.06-0.25mg/kg/min) and the rate altered depending on the patient’s anaesthetic depth. Criteria for inadequate anaesthesia were a sudden increase in indirect arterial blood pressure (DAP; measured via Doppler) of >20%, a sudden increase in heart rate of 10% in the absence of hypovolaemia and somatic responses such as swallowing or movement. In these cats alfaxalone infusion was increased by 0.05mg/kg/min increments every minute until no response to noxious stimulation was observed. Between increments, the surgeon was asked to stop the procedure. A DAP <80 mmHg (hypotension) was treated by increasing fluid therapy (Lactated Ringer’s solution) from 10 to 50ml/kg/hour. In addition, if possible, the alfaxalone infusion rate was decreased by a 0.02mg/kg/min increment every 5 minutes. If hypotension had not resolved after 15 minutes other pharmacological interventions were made.
Results: Once the alfaxalone infusion was stopped the time to first spontaneous movement (TS) was a mean of 27 minutes in male and 49 minutes in female cats (females having a proportionally longer anaesthetic and therefore longer infusion time). TS was greater than 30 minutes in 19 cats, atipamezole administration did not appear to hasten recovery in the 12 cats where this was administered. Apnoea was not observed in any cat although body temperature was found to be significantly lower in the 19 cats that had slower recoveries. 
Conclusion: It was found that alfaxalone TIVA in combination with medetomidine and morphine premedication was effective in feral and domestic cats for the performance of neutering surgery; low body temperature might have resulted in longer recoveries in some cats.


2. Studies performed by Pypendop et al. (2018a, b, c) investigated the pharmacokinetics and clinical effects of the preserved formulation of alfaxalone (Alfaxan Multidose, Jurox) in cats.  In all three of these studies alfaxalone was used to successfully maintain anaesthesia via intravenous infusion, and in two (Pypendop et al. (2018b, c) anaesthesia was maintained for prolonged periods of time (up to 4 hours in some).  It must be noted that the current Alfaxan Multidose licence in the UK states that ‘The veterinary medicinal product has been used safely and effectively in dogs and cats for procedures lasting for up to one hour’ and so the above information should only be taken as assurance for the safety of the preserved formulation of Alfaxan when used in this manner.


3. Comparison of the effects of propofol or alfaxalone for anaesthesia induction and maintenance on respiration in cats.

In a study by Campagna et al. (2014) twenty female cats undergoing ovariohysterectomy were administered either alfaxalone (Group A, n = 10) or propofol (Group P, n = 10) for both induction and maintenance of anaesthesia. Method: Premedication in all cases comprised of intramuscular medetomidine (0.01mg/kg) and subcutaneous meloxicam (0.3mg/kg). In group A, alfaxalone at 5mg/kg/min was administered for induction followed by 10mg/kg/hr intravenously (IV) for maintenance of anaesthesia. In group P, propofol at 6mg/kg/min was administered for induction followed by 12mg/kg/hr intravenously for maintenance. After induction all cats were connected to a non-rebreathing system delivering 100% oxygen. The anaesthetic maintenance drug rate was adjusted (±0.5 mg/kg/hr) every 5 minutes according to a scoring sheet based on physiologic variables and clinical signs.  Results: Manual ventilation was required in two and eight of the cats in group A and P, respectively (p = 0.02). Two cats in both groups showed apnoea. Induction and maintenance dose rates (mean±SD) were 11.6±0.3 mg/kg and 10.7±0.8 mg/kg/hr for alfaxalone and 11.7±2.7 mg/kg and 12.4±0.5 mg/kg/hour for propofol. 
Conclusion: Alfaxalone had less adverse influence on respiration than propofol in cats premedicated with medetomidine. Alfaxalone might be better than propofol for induction and maintenance of anaesthesia when artificial ventilation cannot be provided.


4. Minimum infusion rate of alfaxalone for total intravenous anaesthesia after sedation with acepromazine or medetomidine in cats undergoing ovariohysterectomy.

In this prospective, randomised and ‘blinded’ study by Schwarz et al. (2014) the minimum infusion rate of alfaxalone for total intravenous anaesthesia was assessed in twenty-eight cats undergoing ovariohysterectomy.  
Method: Premedication included intramuscular butorphanol (0.2mg/kg) alongside either intramuscular acepromazine (0.1mg/kg, group AA) or intramuscular medetomidine (0.02mg/kg, group MA). Anaesthesia was induced with alfaxalone administered intravenously to effect (0.2mg/kg every 20 seconds) and maintained on an initial intravenous alfaxalone infusion rate of 8mg/kg/hr which was adjusted at 5-minute intervals (±0.5mg/kg/hr) dependent on alterations in heart rate, respiratory rate, doppler blood pressure and the presence of a palpebral reflex. Additional alfaxalone boluses were administered intravenously if cats moved/swallowed (at 0.5 mg/kg) or if respiratory rate increased over 40 breaths per minute (at 0.25 mg/kg).  Results: Alfaxalone anaesthesia induction dose (mean±SD), was lower in group MA (1.87±0.5; group AA: 2.57±0.41 mg/kg). No cats became apnoeic. Intraoperative bolus requirements and TIVA rates (group AA: 11.62±1.37, group MA: 10.76±0.96 mg/kg/hr) did not differ significantly between groups. 
Conclusion: Alfaxalone TIVA in cats after medetomidine or acepromazine sedation provided suitable anaesthesia with no need for ventilatory support. After these premedicants, the authors recommend initial alfaxalone TIVA rates of 10 mg/kg/hour.


STUDIES USING ALFAXALONE TOTAL INTRAVENOUS ANAESTHESIA IN DOGS.


1. Alfaxalone for total intravenous anaesthesia in dogs undergoing ovariohysterectomy: a comparison of premedication with acepromazine or dexmedetomidine. Herbert et al. (2012) investigated the use of alfaxalone for total intravenous anaesthesia (TIVA) in dogs undergoing ovariohysterectomy.
Method: Dogs received a premedication of intramuscular buprenorphine (0.02mg/kg) and either acepromazine (0.05mg/kg) or dexmedetomidine (approximately 0.01mg/kg, adjusted for body surface area) followed by induction with alfaxalone dosed to effect. Anaesthetic maintenance was performed with alfaxalone via continuous rate infusion.  
Results: Doses for induction and maintenance are presented as mean±SD. Induction was achieved with 1.5±0.57mg/kg and this dose did not differ significantly between group. Alfaxalone infusion rate was significantly lower in the dexmedetomidine group (0.08 [0.06 0.19] mg/kg/min) than those administered acepromazine (0.11 [0.07– 0.33] mg/kg/min). Alfaxalone boluses were given intravenously if required and the total dose of these (1.2 [0-6.3]mg/kg) did not differ between groups. Cardiovascular variables increased significantly during ovarian and cervical ligation and wound closure compared to baseline values in both groups. Apnoea and hypoventilation were common and not significantly different between groups. Arterial haemoglobin oxygen saturation remained above 95% in all animals. Recovery quality scores were significantly poorer for dogs that received dexmedetomidine than those that were administered acepromazine. 
Conclusion: Alfaxalone TIVA is an effective anaesthetic for surgical procedures but, in the protocol of this study, causes respiratory depression at infusion rates required for surgery.


2. Comparison of alfaxalone and propofol administered as total intravenous anaesthesia for ovariohysterectomy in dogs.  In a study by Suarez et al. (2012) fourteen healthy crossbred female dogs presenting for ovariohysterectomy were induced and maintained with either intravenous alfaxalone or propofol via total intravenous anaesthesia (TIVA). 
Method: Doses for induction and maintenance are presented as mean±SD. Anaesthesia was induced with either alfaxalone (1.9±0.07mg/kg) or propofol (5.8±0.3 mg/kg) following a premedication of subcutaneous acepromazine (0.01mg/kg) and morphine (0.4mg/kg) administered approximately 30 minutes beforehand. Anaesthesia was then maintained via a continuous rate infusion of alfaxalone (0.11±0.01 mg/kg/min) or propofol (0.37±0.09 mg/kg/min). 
Results: Median (interquartile range) recovery times in minutes to sternal were 45 (33–69) and 60 (46–61) and to standing 74 (69– 76) and 90 (85–107) for propofol and alfaxalone respectively. Recovery quality was classed as good. Cardiopulmonary effects did not differ between groups although hypoventilation was observed in both groups. 
Conclusion: Following premedication with acepromazine and morphine, both propofol and alfaxalone produce good quality anaesthesia adequate for ovariohysterectomy. Hypoventilation occurs suggesting a need for ventilatory support during prolonged infusion periods with either anaesthetic agent.


3. Comparison of the anesthetic efficacy and cardiopulmonary effects of continuous rate infusions of alfaxalone-2-hydroxypropyl-β-cyclodextrin and propofol in dogs. In their crossover study, Ambros et al. (2008) compared the anaesthetic efficacy and cardiopulmonary effects of alfaxalone and propofol when delivered via continuous rate infusion (CRI) in dogs. 
Method: Six young and clinically healthy dogs were administered intravenous alfaxalone (2mg/kg) or propofol (4mg/kg) for induction following an intravenous premedication of acepromazine (0.02mg/kg) and hydromorphone (0.05mg/kg). Following intubation, anaesthesia was maintained with the same agent (alfaxalone at 0.07 mg/kg/min; propofol at 0.25 mg/kg/min). 
Results: Both alfaxalone and propofol produced excellent induction of anaesthesia, maintenance, and recovery. Respiratory depression was evident with both anaesthetics. Mild hemodynamic changes (considered clinically acceptable) were similar for both anaesthetics.
Conclusion: Alfaxalone produced clinically acceptable anesthetic quality and hemodynamic values ideal for use as a CRI. Ventilation may need to be supported if hydromorphone is used at these propofol and alfaxalone-HPCD infusion rates.


BIOEQUIVALENCE STUDIES


1. The bioequivalence of a single intravenous administration of the anesthetic alfaxalone in cyclodextrin versus alfaxalone in cyclodextrin plus preservatives in cats.

In a randomised, two period, cross-over (7-day washout period) study by Pasloske et al. 2018, twenty-four cats (12 male and 12 female) were administered either the unpreserved (Alfaxan, Jurox) or preserved formulation (Alfaxan Multidose, Jurox) of alfaxalone at 5mg/kg (the licenced induction dose for unpremedicated cats; administered intravenously over 60 seconds) in order to assess drug bioequivalence. 
Method: Subjective assessment of quality of anaesthetic induction, effectiveness and recovery were performed (via visual analogue scale [VAS] scoring) alongside continuous measurement of select physiological values (i.e. pulse rate, heart rate and rhythm (auscultated), respiratory rate, Sp02, ETC02, mucous membrane colour and rectal temperature). Time to endotracheal tube placement, endotracheal tube removal, head lift, sternal recumbency and unassisted standing were also recorded. Venous blood samples were collected at predetermined time points to 12 hr after drug administration to determine alfaxalone plasma concentration over time. 
Results: No physiological variables except for a drug by time interaction for respiratory rate differed between treatment groups, and this difference was not clinically relevant. No anaesthetic event times or VAS scores for quality of anaesthesia were different between treatment groups. Neither formulation caused pain upon injection. 
Conclusion: This pharmacokinetic and pharmacodynamic bioequivalence study demonstrates both the unpreserved and preserved formulations of alfaxalone (i.e. Alfaxan and Alfaxan Multidose respectively) are bioequivalent when administered as a single dose of 5 mg/kg body weight in the cat. Therefore, veterinarians and technicians can interchange the formulations without observing any change in induction for anesthetic efficacy or safety.


2. An in vivo study investigating the bioequivalence of Alfaxan® versus alfaxalone plus preservatives as an injectable anesthetic agent in dogs.

In a bioequivalence study (unpublished), similar to the published bioequivalence study performed in cats (see above; Pasloske et al. 2018), twenty-four adult male dogs were anaesthetised with 3mg/kg (licenced induction dose for unpremedicated dogs) of either the unpreserved or preserved formulations of alfaxalone (i.e. Alfaxan and Alfaxan Multidose respectively) administered intravenously over 60 seconds.  
Method: Subjective measurements of anaesthetic induction, drug effectiveness and anaesthetic recovery (via visual analogue scale [VAS] scoring) as well as the recording of select physiological values (i.e. pulse rate, heart rate and rhythm, respiratory rate, Sp02, ETC02, mucous membrane colour and rectal temperature) were performed. Time to endotracheal tube placement, endotracheal tube removal, head lift, sternal recumbency and unassisted standing were also recorded. As well as this, venous blood samples being taken were collected at predetermined time points to determine alfaxalone plasma concentration over time.  
Results: There was no observed pain upon injection or injection site reactions for either the unpreserved or preserved formulation. All physiological variables observed after the induction of anaesthesia were within clinically acceptable limits for both formulations. Neither formulation scored ‘better’ compared to the other in terms of induction, anaesthetic and recovery quality. Neither formulation demonstrated consistently longer or shorter anaesthetic durations. 
Conclusion: Clinical data confirmed that Alfaxan and Alfaxan Multidose are pharmacodynamically similar. For pharmacokinetic data, Alfaxan and Alfaxan Multidose met the bioequivalence criteria.


Please note that there is a large amount of other peer reviewed literature available on this topic. Should you require any further information on this, or for any other technical query, please contact our Customer Services team on 0800 500 3171. 

The Jurox User Guide to Achieving the Best Outcome When Using Alfaxan® for the Induction and Maintenance of Anaesthesia is available here

Alfaxan for Maintenance of Anaesthesia: Frequently Asked Questions is available here.

A downloadable Dose Chart for Alfaxan® TIVA by CRI and Intermittent Bolus Administration is available here

Article by
Jurox UK Veterinary Technical Team

Originally published: Thursday, 13th December 2018

References

Ambros B., Duke-Novakovski T., Pasloske K.S. 2008. Comparison of the anesthetic efficacy and cardiopulmonary effects of continuous rate infusions of alfaxalone-2-hydroxypropyl-β-cyclodextrin and propofol in dogs. American journal of veterinary research. 69(11): 1391-1398.

Beths T., Touzot-JourdeG ., Musk G., Pasloske, K. 2014. Clinical evaluation of alfaxalone to induce and maintain anaesthesia in cats undergoing neutering procedures. Journal of feline medicine and surgery. 16(8): 609-615.

Campagna I., Schwarz A., Keller S., Bettschart&dash;Wolfensberger R., Mosing M. 2015. Comparison of the effects of propofol or alfaxalone for anaesthesia induction and maintenance on respiration in cats. Veterinary anaesthesia and analgesia. 42(5): 484-492.

Herbert G.L., Bowlt K.L., Ford-Fennah  V., Covey-Crump G.L., Murrell, J.C. 2013. Alfaxalone for total intravenous anaesthesia in dogs undergoing ovariohysterectomy: a comparison of premedication with acepromazine or dexmedetomidine. Veterinary anaesthesia and analgesia. 40(2): 124-133.

Pasloske K., Ranasinghe M.G., Sauer S., Hare, J. 2018. The bioequivalence of a single intravenous administration of the anesthetic alfaxalone in cyclodextrin versus alfaxalone in cyclodextrin plus preservatives in cats. Journal of veterinary pharmacology and therapeutics. 41(3): 437-446.

Pypendop B.H., Siao K.T., Ranasinghe M.G., Pasloske K. 2018a. Effective plasma alfaxalone concentration to produce immobility in male neutered cats. Veterinary anaesthesia and analgesia. 45(3): 269-277.

Pypendop B.H., Ranasinghe M.G., Pasloske, K. 2018b. Comparison of two intravenous anesthetic infusion regimens for alfaxalone in cats. Veterinary anaesthesia and analgesia. 45(4): 459-466

Pypendop B.H., Ranasinghe M.G., Pasloske, K. 2018a. Pharmacokinetics of alfaxalone infusions, context-sensitive half-time and recovery times in male neutered cats. Veterinary anaesthesia and analgesia. 45(5): 630-639.

Schwarz A., Kalchofner K., Palm J., Picek S., Hartnack S., Bettschart&dash;Wolfensberger R. 2014. Minimum infusion rate of alfaxalone for total intravenous anaesthesia after sedation with acepromazine or medetomidine in cats undergoing ovariohysterectomy. Veterinary anaesthesia and analgesia. 41(5): 480-490. 

Suarez M.A., Dzikiti B.T., Stegmann F.G., Hartman M. 2012. Comparison of alfaxalone and propofol administered as total intravenous anaesthesia for ovariohysterectomy in dogs. Veterinary Anaesthesia and Analgesia. 39(3): 236-244.

Keep reading... More news items that may interest you.

Rabbit Anaesthesia – Understanding Your Patient.

How does the anatomy, physiology, behaviour and response to drugs affect your decision making when anaesthetising the rabbit patient?

Read On...

Paper summary: Heated intravenous fluids alone fail to prevent hypothermia in cats under general anaesthesia.

In this summary of a paper by Jourdan et al (2017) we examine the common practice of warming intravenous fluids and the effect on patient temperature.

Read On...

​Considerations for anaesthesia of the brachycephalic dog.

In this article Matt Gurney discusses the induction of anaesthesia and intubation of the brachycephalic patient.

Read On...

Watch the induction and intubation of a brachycephalic.

Induction of anaesthesia and intubation of a brachycephalic dog with Matt Gurney.

Read On...

Paper summary: The effect of omeprazole on oesophageal pH in dogs during anaesthesia

This summary of a publication by Panti et al., examines the effect of orally administered omeprazole on gastro-oesophageal reflux in the anaesthetised dog.

Read On...

How does a syringe driver benefit your patients?

Syringe drivers are becoming increasingly commonplace in modern veterinary practice and are a useful tool for multiple applications. This article looks at the science behind constant rate infusions and the basics of syringe driver use.

Read On...

Paper summary: Pet owner opinions about anaesthesia, pain and surgery in small animals

In this paper we explore perceptions and opinions of Canadian pet owners about anaesthesia, pain and surgery in small animals.

Read On...

Achieving Safer Anaesthesia with ASA and Joanne Michou MA VetMB DipECVAA MRCVS

How can a Veterinary version of the ASA Physical Status Classification help you achieve safer anaesthesia? To find out how watch our webinar.

Read On...

Paper summary: ASA classification and risk of anaesthetic related death in dogs and cats.

This scientific paper assessed whether the American Society of Anesthesiologists (ASA) Physical Status Classification correlated with the risk of anaesthetic death in dogs and cats.

Read On...

New! Methadyne, Our New Methadone Now Available

This is our third product launch this year, and the latest addition to our anaesthesia and analgesia portfolio, Methadyne, contains 10mg/ml methadone as its active ingredient. It can be administered for analgesia of moderate to severe pain in dogs and cats, to provide neuroleptanalgesia, and as part of a patient’s premedication protocol prior to general anaesthesia.

Read On...

A retrospective comparison of two analgesic strategies after uncomplicated tibial plateau levelling osteotomy in dogs.

In this review we summarise a publication by Bini (2018) examining two protocols for the administration of methadone following TPLO surgery in dogs.

Read On...

Practical Acute Pain Assessment

In this summary of acute pain assessment, Carl Bradbrook examines why we should be monitoring patients for pain and looks at the commonly used scoring systems.

Read On...

ISOFLURANE OUT OF STOCK: TIVA or not to TIVA?

In this article the Jurox UK Technical Team discuss the use of intravenous agents to maintain anaesthesia in the dog and cat.

Read On...

Benzodiazepines - can they help reduce anaesthesia related side effects?

In part 4 of this series on premedicant agents we examine the pros and cons of benzodiazepines.

Read On...

Paper summary: Effect of benzodiazepines on the dose of alfaxalone needed for endotracheal intubation in healthy dogs

This paper examined whether a benzodiazepine, administered as a co-induction agent with alfaxalone, improved endotracheal intubation, and reduced the dose of alfaxalone, in the dog

Read On...

Putting methadone in its place in your pain management.

In this article we examine why methadone could be considered the analgesic of choice for many of our patients and understand its importance in modern veterinary medicine. The article includes a link to a downloadable summary sheet.

Read On...

Food for Thought: Pre-anaesthetic Fasting

In this article Karen examines why we fast our canine and feline patients prior to anaesthesia and what the current recommendations are. Karen also investigates why rabbits are different and should not be starved before anaesthesia.

Read On...

​Purr-fecting Pain Management

In this article summary we examine which of the two opioids, buprenorphine or butorphanol, provides the most appropriate analgesia following ovariohysterectomy in the cat.

Read On...

Perspectives on Premeds - Phenothiazines: from Mental Health to Premedication

In this article from the Perspectives on Premeds series, Karen takes us through the properties and uses of phenothiazines in modern veterinary practice.

Read On...

Methadone with Acepromazine - when is enough, enough?

This study looks at the effects of three methadone doses combined with acepromazine on sedation and some cardiopulmonary variables in dogs.

Read On...

AceSedate®, Our New Acepromazine, Available Now.

We have extended our anaesthesia and analgesia portfolio with the launch of AceSedate®. Containing the tried and trusted, long-acting sedative agent acepromazine as its active ingredient, AceSedate can be used for the premedication, sedation and tranquilisation of cats and dogs.

Read On...

Time: is 30 minutes long enough?

This recent study examined whether the application of EMLA cream, for 30 or 60 minutes, would be a useful tool to improve patient compliance prior to intravenous cannula placement in the veterinary clinical practice setting.

Read On...

Caesarean Section Survival Guide. Part 2: Anaesthetic Protocol Selection & Peri-operative Considerations.

In this second instalment of the 2-part article, we explore premedication, induction, maintenance & monitoring, recovery and analgesia for the Caesarean section patient.

Read On...

Buprenorphine: it’s not all static in rabbits

Opioids are well known for causing gastrointestinal stasis in mammalian species. This recent paper examined the effects of a single high dose of buprenorphine on the rabbit gastrointestinal tract using non-invasive imaging techniques.

Read On...

Caesarean Section Survival Guide. Part 1: Physiology & Pre-anaesthetic Considerations.

In the first instalment of this 2-part review Karen examines the physiological changes that occur during pregnancy and how those adjustments can affect the selection of anaesthetic protocols for the increasingly common Caesarean section.

Read On...

No leeway for the spay: A comparison between methadone and buprenorphine for perioperative analgesia in dogs undergoing ovariohysterectomy.

This recent paper compares post-operative pain scores and requirement for rescue analgesia following premedication with methadone or buprenorphine, in combination with acepromazine or medetomidine, in 80 bitches undergoing ovariohysterectomy.

Read On...

Cardiac arrest - the human factor

Cardiac arrest in dogs and cats is, thankfully, relatively rare. However, when it does happen it can have devastating consequences for the animal, owner and the veterinary team. This study examined the common causalities leading up to a cardiac arrest with the aim of changing protocols to improve outcomes.

Read On...

Are you Using Safety Checklists in your Practice?

In this article, Carl focuses on the benefits of introducing a safety checklist in practice to reduce patient morbidity, mortality and to improve communication between members of the veterinary team. The article contains links to the AVA safety checklist as well as a link to a customisable list that you can adapt to your practice needs. 

Read On...

The Big Chill - Temperature Management in Sedated and Anaesthetised Patients

The effects of hypothermia are very far reaching throughout the peri-anaesthetic process. In this article, James takes us through the interesting mechanisms of body cooling and warming, the clinical relevance of hypothermia and what we can do to prevent it.

Read On...

Keeping the Finger on the Pulse -  Nuances in CV Monitoring

All patients are exposed to the risks associated with general anaesthesia. Continuously monitoring anaesthetised patients maximises patients safety and wellbeing. In this article, Dan takes us through the common monitoring techniques that provide information about the cardiovascular status of your patient. 

Read On...

Effect of Maropitant on Isoflurane Requirements & Postoperative Nausea & Vomiting

Despite being widely recognized in humans, postoperative nausea and vomiting (PONV), and the role of maropitant in reducing inhalational anaesthetic requirements have been poorly documented in dogs. This recent study evaluates PONV and isoflurane requirements after maropitant administration during routine ovariectomy in bitches.

Read On...

New! Alfaxan® Multidose Now Available

We are happy to announce we have enhanced our anaesthesia and analgesia portfolio with the introduction of Alfaxan®Multidose for dogs, cats and pet rabbits.

Read On...

Sevoflurane requirement in dogs premedicated with medetomidine and butorphanol

Little information is available about the effect that different doses of medetomidine and butorphanol may have when using sevoflurane for maintenance of anaesthesia in dogs. This recent study evaluates heart rate and median sevoflurane concentration required at different dose rates.

Read On...

Capnography II - What happened to the elephants? A summary of abnormal traces

In this second article of the capnography series, James provides a guide to a few of the most common traces that you will encounter during surgery. Scroll to the end of the article to download a printable capnography cheatsheet. 

Read On...

Pain, what a Pain! (Part 2) – Practical Tips On How To Perform Dental Nerve Blocks In Companion Animal Practice

In this second article of the Pain, what a Pain! series, Dan takes us through the LRA techniques associated with dental and oral surgery. In this article, you will find practical tips and pictures on common dental nerve blocks as well as safety concerns to consider.

Read On...

​Peri-anaesthetic mortality and nonfatal gastrointestinal complications in pet rabbits

This recent retrospective study looks at the cases of 185 pet rabbits admitted for sedation or general anaesthetic and evaluates the incidence and risk factors contributing to peri-anaesthetic mortality and gastrointestinal complications.

Read On...

Pain, what a Pain! How Locoregional Anaesthesia can Improve the Outcome and Welfare of Veterinary Patients (Part 1)

In this first article out of a series of two, Dan takes us through an introduction and practical tips for appropriate local anaesthesia delivery. Find out why these anaesthesia techniques, that are well recognised in human medicine, have seen an increase in popularity in veterinary medicine over the recent years

Read On...

Perspectives on Premeds – Opioids

Perspectives on Premeds is a series of articles touching on different pharmacological, physiological and clinical aspects of pre-anaesthetic medication. This second article aims to provide a refresher on opioids.

Read On...

Effects of Dexmedetomidine with Different Opioid Combinations in Dogs

Read the highlights of a recently published research paper that evaluates cardiorespiratory, sedative and antinociceptive effects of dexmedetomidine alone and in combination with morphine, methadone, meperidine, butorphanol, nalbuphine and tramadol. 

Read On...

Preoxygenation Study Highlights

This study evaluates the effectiveness of two methods of preoxygenation in healthy yet sedated dogs and the impact of these methods on time taken to reach a predetermined haemoglobin desaturation point (haemoglobin saturation (SpO2) of 90%) during an experimentally induced period of apnoea.

Read On...

Capnography – Not Just a Load of Hot Air

Capnography is the measurement of inhaled and exhaled carbon dioxide (CO2) concentration. The graphical illustration of CO2 within respired gases versus times is known as the capnogram.

Read On...

Perspectives on Premeds – Alpha-2 Agonists

Perspectives on Premeds is a series of articles touching on different pharmacological, physiological and clinical aspects of pre-anaesthetic medication. This first article aims to provide a refresher on α2 agonists.

Read On...

We are ‘injecting’ a bit of fun into BSAVA Congress!

We will be ‘injecting’ a bit of fun into BSAVA Congress on our stand (stand 702).

Read On...

Alfaxan - now licensed for use in pet rabbits

Jurox Animal Health is delighted to announce that Alfaxan is now licensed for cats, dogs and pet rabbits. This is an exciting advance and could change the way rabbits are anaesthetised in the U.K.

Read On...

Best Practice Rabbit Anaesthesia Roadshows

Jurox Announces eight country wide events on Best Practice Rabbit Anaesthesia

Read On...

Considerations in Rabbit Anaesthesia at the 2017 London Vet Show

Jurox to host talks on Considerations in Rabbit Anaesthesia at the 2017 London Vet Show.

Read On...

Vets needing more support for anaesthesia

Jurox research reveals that veterinary professionals have questions about their anaesthetic protocols

Read On...
Repeatable. Reliable. Relax.